Abstract
Our previous studies strongly indicated that the up-regulated activity of skin fibroblast-derived elastase plays a pivotal role in wrinkling and/or sagging of the skin via the impairment of elastic fiber configuration and the subsequent loss of skin elasticity. Fortunately, we succeeded in identifying human skin fibroblast-derived elastase as a previously known enzyme, neprilysin or neutral endopeptidase (NEP). We have also characterized epithelial-mesenchymal paracrine cytokine interactions between UVB-exposed-keratinocytes and dermal fibroblasts and found that interleukin-1α and granulocyte macrophage colony stimulatory factor (GM-CSF) are intrinsic cytokines secreted by UVB-exposed keratinocytes that stimulate the expression of neprilysin by fibroblasts. On the other hand, direct UVA exposure of human fibroblasts significantly stimulates the secretion of IL-6 and also elicits a significant increase in the gene expression of matrix metallo-protease(MMP)-1 as well as neprilysin (to a lesser extent), which is followed by distinct increases in their protein and enzymatic activity levels. Direct UVA exposure of human keratinocytes also stimulates the secretion of IL-6, IL-8 and GM-CSF but not of IL-1 and endothelin-1. These findings suggest that GM-CSF secreted by UVA-exposed keratinocytes as well as IL-6 secreted by UVA-exposed dermal fibroblasts play important and additional roles in UVA-induced sagging and wrinkling by up-regulation of neprilysin and MMP-1, respectively, in dermal fibroblasts.
Author supplied keywords
Cite
CITATION STYLE
Imokawa, G., Nakajima, H., & Ishida, K. (2015, April 8). Biological mechanisms underlying the ultraviolet radiation-induced formation of skin wrinkling and sagging II: Over-expression of neprilysin plays an essential role. International Journal of Molecular Sciences. MDPI AG. https://doi.org/10.3390/ijms16047776
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.