Synthesis and Characterization of N and Fe-Doped TiO2 Nanoparticles for 2,4-Dimethylaniline Mineralization

7Citations
Citations of this article
29Readers
Mendeley users who have this article in their library.

Abstract

The present study aimed to evaluate the feasibility of developing low-cost N- and Fe-doped TiO2 photocatalysts for investigating the mineralization of 2,4-dimethylaniline (2,4-DMA). With a single anatase phase, the photocatalysts showed high thermal stability with mass losses of less than 2%. The predominant oxidative state is Ti4+, but there is presence of Ti3+ associated with oxygen vacancies. In materials with N, doping was interstitial in the NH3/NH4+ form and for doping with Fe, there was a presence of Fe-Ti bonds (indicating substitutional occupations). With an improved band gap energy from 3.16 eV to 2.82 eV the photoactivity of the photocatalysts was validated with an 18 W UVA lamp (340–415 nm) with a flux of 8.23 × 10−6 Einstein s−1. With a size of only 14.45 nm and a surface area of 84.73 m2 g−1, the photocatalyst doped with 0.0125% Fe mineralized 92% of the 2,4-DMA in just 180 min. While the 3% N photocatalyst with 12.27 nm had similar performance at only 360 min. Factors such as high surface area, mesoporous structure and improved Ebg, and absence of Fe peak in XPS analysis indicate that doping with 0.0125% Fe caused a modification in TiO2 structure.

Cite

CITATION STYLE

APA

Faustino, E., da Silva, T. F., Cunha, R. F., Guelfi, D. R. V., Cavalheri, P. S., de Oliveira, S. C., … Junior, A. M. (2022). Synthesis and Characterization of N and Fe-Doped TiO2 Nanoparticles for 2,4-Dimethylaniline Mineralization. Nanomaterials, 12(15). https://doi.org/10.3390/nano12152538

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free