Development of the spatial organization and dynamics of lateral interactions in the human visual system

35Citations
Citations of this article
81Readers
Mendeley users who have this article in their library.

Abstract

Psychophysical thresholds and neuronal responses for isolated stimuli are strongly modified by nearby stimuli in the visual field. We studied the orientation and position specificity of these contextual interactions using a dual-frequency visual-evoked potential technique in developing human infants and adults. One set of small, oriented stimulus elements (targets) was tagged with a temporal frequency f1 of 4.52 Hz. The addition of an abutting second set of similar patches (flankers) tagged at f2 = 2.58 Hz had three effects: (1) The flankers reduced the second and fourth harmonic responses to the targets. This reduction was independent of flanker orientation or position and age. (2) The response to the combination of targets and flankers also contained nonlinear interaction terms (1f1 ± 1f2) that were tuned for flanker orientation and position in adults, but only for flanker orientation in infants 8-31 weeks of age. (3) Nonlinear interaction terms recorded at 2f1 ± 2f2 were large and untuned for flanker orientation and position in adults but were nearly absent in the youngest infants. The three forms of nonlinear interaction, thus, have differences in sensitivity to flanker orientation and position and differential growth trends, indicating that they are generated by different mechanisms. These three forms of interaction could serve different functional roles. The first process provides a nonselective gain control that is fully functional in early infancy. The second process, which develops slowly, is selective for the specific form of the stimuli. The third process, which is also immature, pools across orientation.

Cite

CITATION STYLE

APA

Hou, C., Pettet, M. W., Sampath, V., Candy, T. R., & Norcia, A. M. (2003). Development of the spatial organization and dynamics of lateral interactions in the human visual system. Journal of Neuroscience, 23(25), 8630–8640. https://doi.org/10.1523/jneurosci.23-25-08630.2003

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free