Sea surface roughness (SSR) is a key physical parameter in studies of air–sea interactions and the ocean dynamics process. The SSR quantitative inversion model based on multi-angle sun glitter (SG) images has been proposed recently, which will significantly promote SSR observations through multi-angle remote-sensing platforms. However, due to the sensitivity of the sensor view angle (SVA) to SG, it is necessary to determine the optimal imaging angle and their combinations. In this study, considering the design optimization of imaging geometry for multi-angle remote-sensing platforms, we have developed an error transfer simulation model based on the multi-angle SG remote-sensing radiation transmission and SSR estimation models. We simulate SSR estimation errors at di_erent imaging geometry combinations to evaluate the optimal observation geometry combination. The results show that increased SSR inversion accuracy can be obtained with SVA combinations of 0_ and 20_ for nadir- and backward-looking SVAcompared with current combinations of 0_ and 27.6_. We found that SSR inversion prediction error using the proposed model and actual SSR inversion error from field buoy data are correlated. These results can provide support for the design optimization of imaging geometry for multi-angle ocean remote-sensing platforms.
CITATION STYLE
Wang, D., Zhao, L., Zhang, H., Wang, J., Lou, X., Chen, P., … Li, D. (2019). On Optimal Imaging Angles in Multi-Angle Ocean Sun Glitter Remote-Sensing Platforms to Observe Sea Surface Roughness. Sensors, 19(10). https://doi.org/10.3390/s19102268
Mendeley helps you to discover research relevant for your work.