Olive-fruit variety classification by means of image processing and convolutional neural networks

65Citations
Citations of this article
118Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The automation of classification and grading of horticultural products attending to different features comprises a major challenge in food industry. Thus, focused on the olive sector, which boasts of a huge range of cultivars, it is proposed a methodology for olive-fruit variety classification, approaching it as an image classification problem. To that purpose, 2,800 fruits belonging to seven different olive varieties were photographed. After processing these initial captures by means of image processing techniques, the resulting set of images of individual fruits were used to train, and continuedly to externally validate, the implementations of six different Convolutional Neural Networks architectures. This, in order to compute the classifiers with which perform the variety categorization of the fruits. Remarkable hit rates were obtained after testing the classifiers on the corresponding external validation sets. Thus, it was yielded a top accuracy of 95.91% when using the Inception-ResnetV2 architecture. The results suggest that the proposed methodology, once integrated into industrial conveyor belts, promises to be an advanced solution to postharvest olive-fruit processing and classification.

Cite

CITATION STYLE

APA

Ponce, J. M., Aquino, A., & Andújar, J. M. (2019). Olive-fruit variety classification by means of image processing and convolutional neural networks. IEEE Access, 7, 147629. https://doi.org/10.1109/ACCESS.2019.2947160

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free