Abstract
Nitrogen, one of the limiting factors for the yield of rice, can also have an important function in methane oxidation, thus affecting its global budget. Rice microcosms, planted in the greenhouse, were treated with the N-fertilizers urea (UPK) and ammonium sulfate (APK) or were only treated with phosphorous and potassium (PK). Methane oxidation rates in PK and UPK treatments were similar during most of the rice-growing season, revealing no effect of urea. However, ammonium sulfate strongly suppressed methanogenesis providing an unfavorable environment for methanotrophs in APK treatment. Roots and rhizospheric soil samples, collected from six different growth stages of the rice plant, were analyzed by terminal restriction fragment length polymorphism (T-RFLP) of the pmoA gene. Assignment of abundant T-RFs to cloned pmoA sequences indicated that the populations on roots were dominated by type-I methanotrophs, whereas the populations in rhizospheric soil were dominated by type-II methanotrophs irrespectively of growth stages and fertilizer treatments. Non-metric multidimensional scaling ordination analysis of T-RFLP profiles revealed that the methanotrophic community was significantly (P<0.001) affected by the different fertilizer treatments; however, the effect was stronger on the roots than in the rhizospheric soil. Contrary to pmoA gene-based analysis, pmoA transcript-based T-RFLP/cloning/sequencing analysis in rhizospheric soil showed type I as the predominant methanotrophs in both PK and UPK treatments. Collectively, our study showed that type-I methanotrophs were dominant and probably active in rhizospheric soil throughout the season irrespective of nitrogen fertilizer used, whereas type-II methanotrophs were relatively more dominant under unfavorable conditions, such as in APK treatment. © 2010 International Society for Microbial Ecology All rights reserved.
Author supplied keywords
Cite
CITATION STYLE
Shrestha, M., Shrestha, P. M., Frenzel, P., & Conrad, R. (2010). Effect of nitrogen fertilization on methane oxidation, abundance, community structure, and gene expression of methanotrophs in the rice rhizosphere. ISME Journal, 4(12), 1545–1556. https://doi.org/10.1038/ismej.2010.89
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.