Abstract
A simplified and effective space vector pulse-width modulation (SVPWM) algorithm with two and three levels for three-phase voltage-source converters is proposed in this study. The proposed SVPWM algorithm only uses several linear calculations on three-phase modulated voltages without any complicated trigonometric calculations adopted by conventional SVPWM. This simplified SVPWM also avoids choosing the vector sector required by conventional SVPWM. A two-level overmodulation scheme is integrated into the proposed two-level SVPMW to generate the output voltage that increases from a linear region to a six-step state with a smoothly linear transition characteristic and a simple overmodulation process without a lookup table and complicated nonlinear functions. The three-level SVPWM with a proportional-integral controller effectively balances the neutral point potential of the neutral point clamped converter. Results from the simulation in MATLAB/Simulink and the experiment based on a digital signal processor are provided to clearly demonstrate the validity and effectiveness of the proposed strategies.
Author supplied keywords
Cite
CITATION STYLE
Zhu, R. W., & Wu, X. J. (2014). Simplified SVPWM that integrates overmodulation and neutral point potential control. Journal of Power Electronics, 14(5), 926–936. https://doi.org/10.6113/JPE.2014.14.5.926
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.