Context. The white dwarf luminosity function is an important tool to understand the properties of the solar neighborhood, like its star formation history, and its age. Aims. Here we present a population synthesis study of the white dwarf population within 40 pc from the Sun, and compare the results of this study with the properties of the observed sample. Methods. We use a state-of-the-art population synthesis code based on Monte Carlo techniques, which incorporates the most recent and reliable white dwarf cooling sequences, an accurate description of the Galactic neighborhood, and a realistic treatment of all the known observational biases and selection procedures. Results. We find a good agreement between our theoretical models and the observed data. In particular, our simulations reproduce a previously unexplained feature of the bright branch of the white dwarf luminosity function, which we argue is due to a recent episode of star formation. We also derive the age of the solar neighborhood employing the position of the observed cut-off of the white dwarf luminosity function, to obtain ~8.9 ± 0.2 Gyr. Conclusions. We conclude that a detailed description of the ensemble properties of the population of white dwarfs within 40 pc of the Sun allows us to obtain interesting constraints on the history of the Solar neighborhood.
CITATION STYLE
Torres, S., & Garciá-Berro, E. (2016). The white dwarf population within 40 pc of the Sun. Astronomy and Astrophysics, 588. https://doi.org/10.1051/0004-6361/201528059
Mendeley helps you to discover research relevant for your work.