Frequency analysis of infrared absorption and vibrational circular dichroism of proteins in D2O solution

56Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The IR absorption frequencies as derived from second derivatives of the Fourier transform IR spectra of the amide I' bands of globular proteins in D2O are compared to those obtained from band fitting of the vibrational circular dichroism (VCD) spectra. The two sets of frequencies are in very good agreement, yielding consistent ranges where amide I' VCD and IR features occur. Use of VCD to complement the IR allows one to add sign information to the frequency information so that features occurring in the overlapping frequency ranges that might arise from different secondary structures can be better discriminated. From this comparison, it is clear that correlation just of the frequency of a given IR transition to secondary structure can lead to a nonunique solution. Different sign patterns were identified for correlated groups of globular proteins in restricted frequency ranges that have been previously assigned to defined secondary structural elements. Hence, different secondary structural elements must contribute band components to a given frequency range. Copyright © 1993 The Protein Society

Cite

CITATION STYLE

APA

Pancoska, P., Wang, L., & Keiderling, T. A. (1993). Frequency analysis of infrared absorption and vibrational circular dichroism of proteins in D2O solution. Protein Science, 2(3), 411–419. https://doi.org/10.1002/pro.5560020313

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free