Learning from Crowds by Modeling Common Confusions

46Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Abstract

Crowdsourcing provides a practical way to obtain large amounts of labeled data at a low cost. However, the annotation quality of annotators varies considerably, which imposes new challenges in learning a high-quality model from the crowdsourced annotations. In this work, we provide a new perspective to decompose annotation noise into common noise and individual noise and differentiate the source of confusion based on instance difficulty and annotator expertise on a per-instance-annotator basis. We realize this new crowdsourcing model by an end-to-end learning solution with two types of noise adaptation layers: one is shared across annotators to capture their commonly shared confusions, and the other one is pertaining to each annotator to realize individual confusion. To recognize the source of noise in each annotation, we use an auxiliary network to choose from the two noise adaptation layers with respect to both instances and annotators. Extensive experiments on both synthesized and real-world benchmarks demonstrate the effectiveness of our proposed common noise adaptation solution.

Cite

CITATION STYLE

APA

Chu, Z., Ma, J., & Wang, H. (2021). Learning from Crowds by Modeling Common Confusions. In 35th AAAI Conference on Artificial Intelligence, AAAI 2021 (Vol. 7, pp. 5832–5840). Association for the Advancement of Artificial Intelligence. https://doi.org/10.1609/aaai.v35i7.16730

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free