Flow cytometry is often performed on adherent cells or solid tissues that have been released from their growth substrate or disaggregated by enzymatic digestion. Although detection of strongly expressed cell surface proteins following such procedures indicates that many survive treatment with proteolytic enzymes, applications such as cell surface proteomics involve assessment of the expression of more than 200 proteins and it is important to know how to interpret negative results. To address this problem, we performed flow cytometry-based cell surface proteomic analysis on two non-adherent cell lines, THP1 and K562, after mock and authentic trypsin treatment, according to a widely used protocol to remove adherent cells (0.25% trypsin, 2.21 mM EDTA, 37°C, 5 min). In a single screening experiment, we examined the effect of treatment on mean fluorescence intensity and on the percent of positive cells and determined the false negative rate. Of 164 determinations that were ≥20% positive after mock treatment, 13 (7.9%) were <20% positive after trypsin treatment. Four proteins were chosen for time-course studies (performed in triplicate), confirming initial sensitivity results but revealing significant variability in the magnitude of the trypsin effect. When trypsin sensitivity of individual proteins was examined as a function of the number of predicted high probability extracellular trypsin cleavage sites, we found that the markers that yielded false negatives all had high numbers of sites (>30), but even so, the majority of proteins with high numbers of trypsin sites could still be detected after mild trypsin treatment. We conclude that the great majority of cell surface proteins can be detected after mild trypsin treatment, but that negative results should not be over-interpreted, due to the possibility of false negatives.
CITATION STYLE
Donnenberg, V. S., Corselli, M., Normolle, D. P., Meyer, E. M., & Donnenberg, A. D. (2018). Flow cytometric detection of most proteins in the cell surface proteome is unaffected by trypsin treatment. Cytometry Part A, 93(8), 803–810. https://doi.org/10.1002/cyto.a.23525
Mendeley helps you to discover research relevant for your work.