The development of the glomerular injury in diabetic nephropathy involves interactions between podocytes, endothelium, and the mesangium. Loss of podocytes is an early and critical step in the development of diabetic nephropathy, and analysis of structural lesions within the mesangium such as mesangiolysis implicate the loss of podocytes as a key mediating event. The BTBR ob/ob mouse has proved a useful tool to demonstrate that restoration of podocyte density, once thought to be an absolute barrier to glomerular repair, can be achieved with replacement of the hormone leptin that is constitutively absent in these mice. Restoration of podocyte density is associated with reversal of the structural lesions of morphologically advanced diabetic glomerular injury in this model. This finding, in conjunction with the demonstration in human diabetic patients with morphologically advanced diabetic nephropathy and with long-standing functioning pancreatic transplants of ten years duration that their diabetic nephropathy can be reversed, suggests that restoration of podocyte number and density is an appropriate target for the development of new therapeutics for diabetic nephropathy.
CITATION STYLE
Alpers, C. E., & Hudkins, K. L. (2018). Pathology identifies glomerular treatment targets in diabetic nephropathy. Kidney Research and Clinical Practice. The Korean Society of Nephrology. https://doi.org/10.23876/j.krcp.2018.37.2.106
Mendeley helps you to discover research relevant for your work.