Nanoencapsulated phase change materials (NePCMs) are promising thermal energy storage (TES) and heat transfer materials that show great potential in battery thermal management systems (BTMSs). In this work, nanocapsules with a paraffin core and silica shell were prepared using an optimized sol-gel method. The samples were characterized by different methods regarding chemical composition, thermal properties, etc. Then, the nanocapsules were used as the coolant by mixing with insulation oil in the immersion cooling of a simulative battery. The sample doped with Ag on the shell with a core-to-shell ratio of 1:1 showed the best performance. Compared to the sample without doping material, the thermal conductivity increased by 49%, while the supercooling degree was reduced by 35.6%. The average temperature of the simulative battery cooled by nanocapsule slurries decreased by up to 3.95 °C compared to the test performed with pure insulation oil as the coolant. These novel nanocapsules show great potential in the immersion cooling of a battery.
CITATION STYLE
Gu, J., Du, J., Li, Y., Li, J., Chen, L., Chai, Y., & Li, Y. (2023). Preparation and Characterization of n-Octadecane@SiO2/GO and n-Octadecane@SiO2/Ag Nanoencapsulated Phase Change Material for Immersion Cooling of Li-Ion Battery. Energies, 16(3). https://doi.org/10.3390/en16031498
Mendeley helps you to discover research relevant for your work.