Direct effect models

62Citations
Citations of this article
51Readers
Mendeley users who have this article in their library.

Abstract

The causal effect of a treatment on an outcome is generally mediated by several intermediate variables. Estimation of the component of the causal effect of a treatment that is not mediated by an intermediate variable (the direct effect of the treatment) is often relevant to mechanistic understanding and to the design of clinical and public health interventions. Robins, Greenland and Pearl develop counterfactual definitions for two types of direct effects, natural and controlled, and discuss assumptions, beyond those of sequential randomization, required for the identifiability of natural direct effects. Building on their earlier work and that of others, this article provides an alternative counterfactual definition of a natural direct effect, the identifiability of which is based only on the assumption of sequential randomization. In addition, a novel approach to direct effect estimation is presented, based on assuming a model directly on the natural direct effect, possibly conditional on a subset of the baseline covariates. Inverse probability of censoring weighted estimators, double robust inverse probability of censoring weighted estimators, likelihood-based estimators, and targeted maximum likelihood-based estimators are proposed for the unknown parameters of this novel causal model. Copyright ©2008 The Berkeley Electronic Press. All rights reserved.

Cite

CITATION STYLE

APA

Van Der Laan, M. J., & Petersen, M. L. (2008). Direct effect models. International Journal of Biostatistics, 4(1). https://doi.org/10.2202/1557-4679.1064

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free