Exploiting biomechanical degrees of freedom for fast and accurate changes in movement direction: Coordination underlying quick bow reversals during continuous cello bowing

17Citations
Citations of this article
46Readers
Mendeley users who have this article in their library.

Abstract

Theoretical and empirical evidence suggests that accurate and efficient motor performance may be achieved by task-specific exploitation of biomechanical degrees of freedom. We investigate coordination of the right arm in a task requiring a sudden yet precisely controlled reversal of movement direction: bow reversals during continuous ("legato") tone production on a stringed instrument. Ten advanced or professional cello players (at least ten years of practice) and ten agematched novice players took part in the study. Kinematic data from the bow and the right arm were analyzed in terms of velocity and acceleration profiles, as well as temporal coordination along the arm. As expected, experts' bow velocity and acceleration profiles differed markedly from those of novice participants, with higher peak accelerations and quicker direction changes. Importantly, experts achieved the change in movement direction with a single acceleration peak while novices tended to use multiple smaller acceleration peaks. Experts moreover showed a proximal-distal gradient in timing and amplitudes of acceleration peaks, with earlier and loweramplitude reversals at more proximal joints. We suggest that this coordination pattern allows generating high accelerations at the end effector while reducing the required joint torques at the proximal joints. This may underlie experts' ability to produce fast bow reversals efficiently and with high spatiotemporal accuracy. The findings are discussed in terms of motor control theory as well as potential implications for musicians' performance and health. © 2013 Verrel, Pologe, Manselle, Lindenberger and Woollacott.

Cite

CITATION STYLE

APA

Verrel, J., Pologe, S., Manselle, W., Lindenberger, U., & Woollacott, M. (2013). Exploiting biomechanical degrees of freedom for fast and accurate changes in movement direction: Coordination underlying quick bow reversals during continuous cello bowing. Frontiers in Human Neuroscience, (APR 2013). https://doi.org/10.3389/fnhum.2013.00157

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free