Power system transient stability is a challenge when integrating large-scale wind turbines into weak grids. This paper addresses the issue of transient stability in such situations by optimizing a wind turbine's active current behavior. A wind turbine's active current reference controller and its setting optimization method are proposed based on analyses of two associated problems: the mechanism for improving transient stability of a single (synchronous) machine infinite bus (SMIB) system, as well as the various physical factor dependencies dictating how active and reactive wind turbine currents affect the swing dynamics of synchronous machines. Analysis of the first problem guided the design of the controller's main structure. Analysis of the second problem guided selection of the control object within a wind turbine's active and reactive currents, as well as helped recognition of the influential physical factors that must be considered in the parameter setting process. The efficiency of the controller and the validity of the analyses were verified by case studies using Kundur's two-area system.
CITATION STYLE
Zhang, D., & Yuan, X. (2017). Optimization of active current for large-scale wind turbines integrated into weak grids for power system transient stability improvement. Energies, 10(8). https://doi.org/10.3390/en10081108
Mendeley helps you to discover research relevant for your work.