A soft, conformable, biocompatible strain sensor based on ultra-thin stretchable electronics is reported. The sensor comprises gold thin films patterned on a 50 μm thick polyurethane substrate to produce resistive-based strain sensors for monitoring bladder stretch. The sensor responds linearly as a function of strain from 0 to 50%, with an increasing sensitivity as a function of sensor length. The sensor displays good stability with very little hysteresis when it is subjected to cycling between 0 and a maximum strain of 50%, with the largest deviation between 0 and 50% strain of ∼19% after 100 cycles attributed to the sensor with the longest length (6 mm) because it physically stretches by a greater distance than sensors with a shorter length. "Breaking" tests on the sensor reveal that shorter sensors can withstand higher maximum strains than longer sensors. A biocompatible hydrogel adhesive is used to attach sensors in vitro to the outside wall of a pig's bladder, and sensor performance is studied with respect to repeated bladder filling and emptying to investigate stretch changes. By monitoring bladder stretch and thus volume noninvasively, the sensor provides a route for developing new treatment options for various urological conditions. ©
CITATION STYLE
Hannah, S., Brige, P., Ravichandran, A., & Ramuz, M. (2019). Conformable, Stretchable Sensor to Record Bladder Wall Stretch. ACS Omega, 4(1), 1907–1915. https://doi.org/10.1021/acsomega.8b02609
Mendeley helps you to discover research relevant for your work.