Abstract
Microglia activation-mediated neuroinflammation plays an important role in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and human immunodeficiency virus (HIV)-associated dementia. Inhibition of microglia activation may alleviate neurodegeneration under neuroinflammatory conditions. In the present study, we compared three flavone C-glycosides extracted from Trollius chinensis BUNGE using a cell-based assay to evaluate their antiinflammatory effects on microglial cells. The results showed that orientin-2″-O-galactopyranoside (OGA) significantly inhibited the production of nitric oxide and tumor necrosis factor (TNF)-α in lipopolysaccharide (LPS)-stimulated microglial cells. OGA also markedly inhibited the LPS-induced expression of TNF-α, interleukin-1β, inducible nitric oxide (NO) synthase, and cyclooxygenase-2, which was accompanied by suppression of the activation of nuclear factor (NF)-κB and the extracellular signal-regulated kinase (ERK) signal pathway. In addition, OGA decreased LPS-induced reactive oxygen species generation, which appears to be related to the activation of the NF-E2-related factor2 (NRF2)/ heme oxygenase-1 (HO-1) pathway in BV-2 microglial cells. Furthermore, OGA reduced the cytotoxicity of activated microglia toward HT-22 neuroblastoma cells in a co-culture system. Taken together, the present study demonstrated that the induction of HO-1-mediated inhibition of the NF-κB and ERK pathways contributes significantly to the antineuroinflammatory and neuroprotective effects elicited by OGA.
Author supplied keywords
Cite
CITATION STYLE
Zhou, X., Gan, P., Hao, L., Tao, L., Jia, J., Gao, B., … Zhen, X. (2014). Antiinflammatory effects of orientin-2″-O-galactopyranoside on lipopolysaccharide-stimulated microglia. Biological and Pharmaceutical Bulletin, 37(8), 1282–1294. https://doi.org/10.1248/bpb.b14-00083
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.