Predicted net efflux of radiocarbon from the ocean and increase in atmospheric radiocarbon content

26Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Prior to changes introduced by man, production of radiocarbon (14C) in the stratosphere nearly balanced the flux of 14C from the atmosphere to the ocean and land biosphere, which in turn nearly balanced radioactive decay in these 14C reservoirs. This balance has been altered by land-use changes, fossil-fuel burning, and atmospheric nuclear detonations. Here, we use a model of the global carbon cycle to quantify these radiocarbon fluxes and make predictions about their magnitude in the future. Atmospheric nuclear detonations increased atmospheric 14C content by about 80% by the mid-1960's. Since that time, the 14C content of the atmosphere has been diminishing as this bomb radiocarbon has been entering the oceans and terrestrial biosphere. However, we predict that atmospheric 14C content will reach a minimum and start to increase within the next few years if fossil-fuel burning continues according to a "business-as-usual" scenario, even though fossil fuels are devoid of 14C. This will happen because fossil-fuel carbon diminishes the net flux of 14C from the atmosphere to the oceans and land biosphere, forcing 14C to accumulate in the atmosphere. Furthermore, the net flux of both bomb and natural 14C into the ocean are predicted to continue to slow and then, in the middle of the next century, to reverse, so that there will be a net flux of 14C from the ocean to the atmosphere. The predicted reversal of net 14C fluxes into the ocean is a further example of human impacts on the global carbon cycle. Copyright 1998 by the American Geophysical Union.

Cite

CITATION STYLE

APA

Caldeira, K., Rau, G. H., & Duffy, P. B. (1998). Predicted net efflux of radiocarbon from the ocean and increase in atmospheric radiocarbon content. Geophysical Research Letters, 25(20), 3811–3814. https://doi.org/10.1029/1998GL900010

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free