Multifunctional metasurfaces have exhibited considerable abilities of manipulating electromagnetic (EM) waves, especially in full-space manipulation. However, most works are implemented with functions controlled by polarization or frequency and seldom involve the incidence angle. Herein, we propose a multifunctional full-space metasurface controlled by frequency, polarization and incidence angle. A meta-atom is firstly designed. When EM waves illumine normally in the C-band, it possesses the characteristic of asymmetric transmission with high-efficient polarization conversion. In the Ku-band, both x - and y -polarized EM waves along both sides will be reflected and achieve broadband and high-efficient cross-polarization conversion. Also, when illumined obliquely, both sides can achieve efficient retroreflection at a certain frequency. As a proof of concept, a metasurface consisting of the above meta-atoms is configured as a dual orbital angular momentum (OAM) vortex beam generator and different beam deflector when illumined normally. Meanwhile, it acts as a multi-channel retroreflector when illumined obliquely. Both the simulated and measured results show excellent performances. Our findings provide a new degree of freedom to design multifunctional metasurfaces that can further promote applications.
CITATION STYLE
Zhang, Z., Wang, J., Zhu, R., Jia, Y., Liu, T., Yan, M., … Qu, S. (2021). Multifunctional full-space metasurface controlled by frequency, polarization and incidence angle. Optics Express, 29(5), 7544. https://doi.org/10.1364/oe.419720
Mendeley helps you to discover research relevant for your work.