Abstract
The solution of a (stochastic) di_erential equation can be locally approximated by a (stochastic) expansion. If the vector teld of the differential equation is a polynomial, the corresponding expansion is a linear combination of iterated integrals of the drivers and can be calculated using Picard Iterations. However, such expansions grow exponentially fast in their number of terms, due to their speci_c algebra, rendering their practical use limited. We present a Mathematica procedure that addresses this issue by reparametrizing the polynomials and distributing the load in as small as possible parts that can be processed and manipulated independently, thus alleviating large memory requirements and being perfectly suited for parallelized computation. We also present an iterative implementation of the shu_e product (as opposed to a recursive one, more usually implemented) as well as a fast way for calculating the expectation of iterated Stratonovich integrals for Brownian motion.
Author supplied keywords
Cite
CITATION STYLE
Ladroue, C., & Papavasiliou, A. (2013). A distributed procedure for computing stochastic expansions with mathematica. Journal of Statistical Software, 53(11), 1–15. https://doi.org/10.18637/jss.v053.i11
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.