Segmentation of latent fingerprint using neural network

2Citations
Citations of this article
3Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Latent fingerprints are the fingerprints that are left by the criminal unintentionally on the surface of the crime scene. The qualities of the latent fingerprints are very poor due to the overlapping patterns and structured noises. Latent fingerprint segmentation is a difficult task due to low visibility, structured noise, and complex structure. In this paper, a fusion of morphological and neural network approach is purposed for latent fingerprint segmentation. This method automatically segments the fingerprints and non-fingerprints patterns without human intervention. The morphological method is used for segmentation of the fingerprint region. Fingerprint region then divides into y*y blocks and extracts the features of each block and uses them as an input of NN to classify the blocks into fingerprint and non-fingerprint blocks. We are using the IIIT-D database and the shows that this model batters then the existing model.

Cite

CITATION STYLE

APA

Chaudhary, N., Dimri, P., & Singh, H. P. (2019). Segmentation of latent fingerprint using neural network. International Journal of Engineering and Advanced Technology, 9(1), 3777–3780. https://doi.org/10.35940/ijeat.A9820.109119

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free