Abstract
In insect flapping flight, non-equilibrium flight conditions such as takeoffs and uncoordinated turn are difficult to investigate with experiments or quasi-steady analysis. Here we develop a simplified rigid body dynamics solver with 6 degrees of freedom (DOF), by utilizing unit quaternions. A free-flight simulator of an insect flapping flight is then built up by coupling the dynamics solver with an in-house CFD solver, which is specified for simulating unsteady flapping-wing aerodynamics. Simulation of the hovering flight of a fruit fly (Drosophila melanogaster) is achieved by manually manipulating three kinematic parameters, wingbeat amplitude, mean positional angle, and stroke plane angle relative to body (anatomical stroke plane angle).
Cite
CITATION STYLE
MAEDA, M., GAO, N., NISHIHASHI, N., & LIU, H. (2010). A Free-Flight Simulation of Insect Flapping Flight. Journal of Aero Aqua Bio-Mechanisms, 1(1), 71–79. https://doi.org/10.5226/jabmech.1.71
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.