Effects of a paddling-based high-intensity interval training prescribed using anaerobic speed reserve on sprint kayak performance

15Citations
Citations of this article
37Readers
Mendeley users who have this article in their library.

Abstract

The aim of this study was to investigate physiological and performance adaptations to high-intensity interval training (HIIT) prescribed as a proportion of anaerobic speed reserve (ASR) compared to HIIT prescribed using maximal aerobic speed (MAS). Twenty-four highly trained sprint kayak athletes were randomly allocated to one of three 4-weak conditions (N = 8) (ASR-HIIT) two sets of 6 × 60 s intervals at ∆%20ASR (MAS-HIIT) six 2 min paddling intervals at 100% maximal aerobic speed (MAS); or controls (CON) who performed six sessions/week of 1-h traditional endurance paddling at 70%–80% maximum HR. A graded exercise test was performed on a kayak ergometer to determine peak oxygen uptake (V̇O2peak), MAS, V̇O2/HR, and ventilatory threshold. Also, participants completed four consecutive upper-body wingate tests to asses peak and average power output. Significant increases in V̇O2peak (ASR-HIIT = 6.9%, MAS-HIIT = 4.8%), MAS (ASR-HIIT = 7.2%, MAS-HIIT = 4.8%), ASR (ASR-HIIT = −25.1%, MAS-HIIT = −15.9%), upper-body Wingate peak power output and average power output (p < 0.05 for both HIIT groups) were seen compared with pre-training. Also, ASR-HIIT resulted in a significant decrease in 500-m (Formula presented.), and (Formula presented.) paddling time. Lower coefficient of variation values were observed for the percent changes of the aforementioned factors in response to ASR-HIIT compared to MAS-HIIT. Overall, a short period of ASR-HIIT improves 500-m and 1,000-m paddling performances in highly trained sprint kayak athletes. Importantly, inter-subject variability (CV) of physiological adaptations to ASR-HIIT was lower than MAS-HIIT. Individualized prescription of HIIT using ASR ensures similar physiological demands across individuals and potentially facilitates similar degrees of physiological adaptation.

Cite

CITATION STYLE

APA

Du, G., & Tao, T. (2023). Effects of a paddling-based high-intensity interval training prescribed using anaerobic speed reserve on sprint kayak performance. Frontiers in Physiology, 13. https://doi.org/10.3389/fphys.2022.1077172

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free