High Entropy Alloys for Aerospace Applications

  • Dada M
  • Popoola P
  • Adeosun S
  • et al.
N/ACitations
Citations of this article
158Readers
Mendeley users who have this article in their library.

Abstract

In the aerospace industry, materials used as modern engine components must be able to withstand extreme operating temperatures, creep, fatigue crack growth and translational movements of parts at high speed. Therefore, the parts produced must be lightweight and have good elevated-temperature strength, fatigue, resistant to chemical degradation, wear and oxidation resistance. High entropy alloys (HEAs) characterize the cutting edge of high-performance materials. These alloys are materials with complex compositions of multiple elements and striking character-istics in contrast to conventional alloys; their high configuration entropy mixing is more stable at elevated temperatures. This attribute allows suitable alloying elements to increase the properties of the materials based on four core effects , which gives tremendous possibilities as potential structural materials in jet engine applications. Researchers fabricate most of these materials using formative manufacturing tech-nologies; arc melting. However, the challenges of heating the elements together have the tendency to form hypoeutectic that separates itself from the rest of the elements and defects reported are introduced during the casting process. Nevertheless, Laser Engineering Net Shaping (LENS™) and Selective Laser Melting (SLM); a powder-based laser additive manufacturing process offers versatility, accuracy in geometry and fabrication of three-dimensional dense structures layer by layer avoiding production errors.

Cite

CITATION STYLE

APA

Dada, M., Popoola, P., Adeosun, S., & Mathe, N. (2021). High Entropy Alloys for Aerospace Applications. In Aerodynamics. IntechOpen. https://doi.org/10.5772/intechopen.84982

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free