Abstract
Background and Aims Roots of Arabidopsis thaliana exhibit a 24.8 h oscillation of elongation rate when grown under free-running conditions. This growth rhythm is synchronized with the time course of the local lunisolar tidal acceleration. The present study aims at a physiological/physical model to describe the interaction of weak gravitational fields with cellular water dynamics that mediate rhythmic root growth profiles. Methods Fundamental physical laws are applied to model the water dynamics within single plant cells in an attempt to mimic the 24.8 h oscillations in root elongation growth. In particular, a quantum gravitational description of the time course in root elongation is presented, central to which is the formation of coherent assemblies of mass due to the lunisolar gravitational field. Mathematical equations that characterize lunisolar gravity-induced coherent assemblies of water molecules are derived and related to the mass of cellular water within roots of A. thaliana. Key Results The derived physical model of gravitationally modulated water assemblies is capable of accounting for the experimentally observed arabidopsis root growth kinetics under free-running conditions. The close analogy between the derived time-dependent lunisolar effect upon coherent molecular states of water within single cells and the coherent assemblies of electrons that characterize the quantum Hall effect is emphasized. Conclusions The dynamics of the lunisolar-induced variation in coherent water assemblies provide a possible mechanism to describe the observed 24.8 h oscillation of root growth rate of A. thaliana. Therefore, this mechanism could function as an independent timekeeper to control cell elongation.
Author supplied keywords
Cite
CITATION STYLE
Fisahn, J., Barlow, P., & Dorda, G. (2018). A proposal to explain how the circatidal rhythm of the Arabidopsis thaliana root elongation rate could be mediated by the lunisolar gravitational force: A quantum physical approach. Annals of Botany, 122(5), 725–733. https://doi.org/10.1093/aob/mcx143
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.