Urban land use and land cover classification using remotely sensed sar data through deep belief networks

120Citations
Citations of this article
154Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Land use and land cover (LULC) mapping in urban areas is one of the core applications in remote sensing, and it plays an important role in modern urban planning and management. Deep learning is springing up in the field of machine learning recently. By mimicking the hierarchical structure of the human brain, deep learning can gradually extract features from lower level to higher level. The Deep Belief Networks (DBN) model is a widely investigated and deployed deep learning architecture. It combines the advantages of unsupervised and supervised learning and can archive good classification performance. This study proposes a classification approach based on the DBN model for detailed urban mapping using polarimetric synthetic aperture radar (PolSAR) data. Through the DBN model, effective contextual mapping features can be automatically extracted from the PolSAR data to improve the classification performance. Two-date high-resolution RADARSAT-2 PolSAR data over the Great Toronto Area were used for evaluation. Comparisons with the support vector machine (SVM), conventional neural networks (NN), and stochastic Expectation-Maximization (SEM) were conducted to assess the potential of the DBN-based classification approach. Experimental results show that the DBN-based method outperforms three other approaches and produces homogenous mapping results with preserved shape details.

Cite

CITATION STYLE

APA

Lv, Q., Dou, Y., Niu, X., Xu, J., Xu, J., & Xia, F. (2015). Urban land use and land cover classification using remotely sensed sar data through deep belief networks. Journal of Sensors, 2015. https://doi.org/10.1155/2015/538063

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free