Polarized infrared emission by polycyclic aromatic hydrocarbons resulting from anisotropic illumination

16Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

We study the polarized infrared emission by polycyclic aromatic hydrocarbons (PAHs), when anisotropically illuminated by UV photons. PAH molecules are modeled as planar disks with in-plane and out-of-plane vibrational modes. As first pointed out by Leger, infrared emission features resulting from in-plane and out-of-plane modes should have orthogonal polarization directions. We show analytically how the degree of polarization depends on the viewing geometry and the molecule's internal alignment between principal axis of inertia and angular momentum, which gets worse after photon absorption. Longer wavelength features, emitted after better internal alignment is recovered, should be more strongly polarized. The degree of polarization for unidirectional illumination (e.g., by a star) is larger than for diffuse illumination (e.g., by a disk galaxy), all else being equal. For PAHs in the cold neutral medium, the predicted polarization is probably too small to distinguish from the contribution of linear dichroism by aligned foreground dust. The level of polarization predicted for PAH emission from the Orion Bar is only 0.06% at 3.3 μm; Sellgren et al. report a much larger value, 0.86% 0.28%, which suggests that the smallest PAHs may have moderately suprathermal rotation rates. Future observations of (or upper limits on) the degree of polarization for the Orion Bar or for dust above edge-on galaxies (e.g., NGC 891 or M82) may constrain the internal alignment of emitting PAHs, thus providing clues to their rotational dynamics. © 2009. The American Astronomical Society. All rights reserved..

Cite

CITATION STYLE

APA

Sironi, L., & Draine, B. T. (2009). Polarized infrared emission by polycyclic aromatic hydrocarbons resulting from anisotropic illumination. Astrophysical Journal, 698(2), 1292–1300. https://doi.org/10.1088/0004-637X/698/2/1292

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free