Tolerogenic Immune-Modifying Nanoparticles Encapsulating Multiple Recombinant Pancreatic β Cell Proteins Prevent Onset and Progression of Type 1 Diabetes in Nonobese Diabetic Mice

  • Podojil J
  • Genardi S
  • Chiang M
  • et al.
25Citations
Citations of this article
34Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Type 1 diabetes (T1D) is an autoimmune disease characterized by T and B cell responses to proteins expressed by insulin-producing pancreatic β cells, inflammatory lesions within islets (insulitis), and β cell loss. We previously showed that Ag-specific tolerance targeting single β cell protein epitopes is effective in preventing T1D induced by transfer of monospecific diabetogenic CD4 and CD8 transgenic T cells to NOD.scid mice. However, tolerance induction to individual diabetogenic proteins, for example, GAD65 (glutamic acid decarboxylase 65) or insulin, has failed to ameliorate T1D both in wild-type NOD mice and in the clinic. Initiation and progression of T1D is likely due to activation of T cells specific for multiple diabetogenic epitopes. To test this hypothesis, recombinant insulin, GAD65, and chromogranin A proteins were encapsulated within poly(d,l-lactic-co-glycolic acid) (PLGA) nanoparticles (COUR CNPs) to assess regulatory T cell induction, inhibition of Ag-specific T cell responses, and blockade of T1D induction/progression in NOD mice. Whereas treatment of NOD mice with CNPs containing a single protein inhibited the corresponding Ag-specific T cell response, inhibition of overt T1D development only occurred when all three diabetogenic proteins were included within the CNPs (CNP-T1D). Blockade of T1D following CNP-T1D tolerization was characterized by regulatory T cell induction and a significant decrease in both peri-insulitis and immune cell infiltration into pancreatic islets. As we have recently published that CNP treatment is both safe and induced Ag-specific tolerance in a phase 1/2a celiac disease clinical trial, Ag-specific tolerance induced by nanoparticles encapsulating multiple diabetogenic proteins is a promising approach to T1D treatment.

Cite

CITATION STYLE

APA

Podojil, J. R., Genardi, S., Chiang, M.-Y., Kakade, S., Neef, T., Murthy, T., … Miller, S. D. (2022). Tolerogenic Immune-Modifying Nanoparticles Encapsulating Multiple Recombinant Pancreatic β Cell Proteins Prevent Onset and Progression of Type 1 Diabetes in Nonobese Diabetic Mice. The Journal of Immunology, 209(3), 465–475. https://doi.org/10.4049/jimmunol.2200208

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free