Abstract
Seven-transmembrane receptors typically mediate olfactory signal transduction by coupling to G-proteins. Although insect odorant receptors have seven transmembrane domains like G-protein coupled receptors, they have an inverted membrane topology, constituting a key difference between the olfactory systems of insects and other animals. While heteromeric insect ORs form ligand-activated non-selective cation channels in recombinant expression systems, the evidence for an involvement of cyclic nucleotides and G-proteins in odor reception is inconsistent. We addressed this question in vivo by analyzing the role of G-proteins in olfactory signaling using electrophysiological recordings. We found that Gαs plays a crucial role for odorant induced signal transduction in OR83b expressing olfactory sensory neurons, but not in neurons expressing CO2 responsive proteins GR21a/GR63a. Moreover, signaling of Drosophila ORs involved Gαs also in a heterologous expression system. In agreement with these observations was the finding that elevated levels of cAMP result in increased firing rates, demonstrating the existence of a cAMP dependent excitatory signaling pathway in the sensory neurons. Together, we provide evidence that Gαs plays a role in the OR mediated signaling cascade in Drosophila. © 2011 Deng et al.
Cite
CITATION STYLE
Deng, Y., Zhang, W., Farhat, K., Oberland, S., Gisselmann, G., & Neuhaus, E. M. (2011). The stimulatory Gαs protein is involved in olfactory signal transduction in Drosophila. PLoS ONE, 6(4). https://doi.org/10.1371/journal.pone.0018605
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.