Heat stress facilitates the recovery of atrophied soleus muscle in rat

60Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

Abstract

Effects of heat stress on the recovery of atrophied soleus muscle were studied in rats. Ten-week-old male Wistar rats were randomly divided into cage control (CC) and 5-day hindlimb suspension group (HS). The half of the rats in group HS was exposed to heat stress (41 °C for 60 min) in an incubator immediately after the hindlimb suspension (HS-H) and the other group of rats was not heat stressed (HS-C) prior to 10 days of ambulation recovery. One group of cage control rats (CH) was also exposed to heat similarly. The soleus muscles were dissected at four time points, i.e., immediately after the suspension (or heat stress), and 3, 5, and 10 days after the recovery (n = 8 per group at each time point). The absolute wet weight and water and protein content of whole soleus muscle in group HS-C were ∼36, 27, and 8 mg less than CC (p < 0.05). Thus, the percentage contribution of water and protein loss to the decrease in muscle weight was 75 and 22%, respectively. Although water content, as well as muscle weight, was elevated within 3 days, the increase of protein was delayed. Heat exposure prior to recovery accelerated the increase in protein content even in the control group. These phenomena were closely associated with 72-kD heat shock protein (HSP72) content. It is suggested that heat stress applied at the end of hindlimb unloading facilitated the recovery of atrophied soleus muscle of rat, through possibly HSP72-related events of protein metabolism. The data also indicated that the combination of heat and mechanical stress evoked larger and long lasting HSP72 response than does heat or mechanical stress alone.

Cite

CITATION STYLE

APA

Goto, K., Honda, M., Kobayashi, T., Uehara, K., Kojima, A., Akema, T., … Yoshioka, T. (2004). Heat stress facilitates the recovery of atrophied soleus muscle in rat. Japanese Journal of Physiology, 54(3), 285–293. https://doi.org/10.2170/jjphysiol.54.285

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free