Simulated relationships between sea surface temperatures and tropical convection in climate models and their implications for tropical cyclone activity

12Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The impact of enhanced atmospheric CO2 concentrations on tropical convection and sea surface temperatures (SSTs) over the global tropics is assessed using five fully coupled atmospheric-oceanic general circulation models (AOGCMs). Relationships between SST and either outgoing longwave radiation or convective precipitation rates are evaluated for three climate states: present day, a doubled-CO2 scenario, and a quadrupled-CO2 scenario. All AOGCMs capture a relationship between present-day outgoing longwave radiation (OLR) and SST and between convective precipitation rate (PRC) and SST: deep tropical convection (DTC)-signified by rapidly decreasing OLR and rapidly increasing PRC rates-occurs above an SST threshold of around 25°C. Consistent across allAOGCMs, as concentrations increase to 2×CO2 and 4×CO2, the threshold SSTs for DTC to occur shift to 25.5°-28°C and 26.5°-30°C, respectively. Annual PRC rates in the 20°N-20°S region increase for two AOGCMs [Meteorological Research Institute Coupled General Circulation Model, version 2.3.2 (MRI CGCM2.3.2) and ECHAM5/Max Planck Institute Ocean Model (MPI-OM)] with increasing CO2, but PRC in the other three AOGCMs [Geophysical Fluid Dynamics Laboratory Climate Model versions 2.0 and 2.1 (GFDL CM2.0 and CM2.1) and National Center for AtmosphericResearch (NCAR) Parallel ClimateModel (PCM)] exhibits almost no change. Within this tropical zone, increased CO2 concentrations yield up to a 6.1% increase in the number of locations with monthly averaged PRC exceeding two established DTC thresholds (12 and 14 mm day-1). These results indicate that, although the SST threshold for DTC is projected to shift with increasing atmospheric CO2 concentrations, there will not be an expansion of regions experiencing DTC. One implication of these findings is that there will be little change in regions experiencing tropical cyclogenesis in future climate states. © 2012 American Meteorological Society.

Cite

CITATION STYLE

APA

Evans, J. L., & Waters, J. J. (2012). Simulated relationships between sea surface temperatures and tropical convection in climate models and their implications for tropical cyclone activity. Journal of Climate, 25(22), 7884–7895. https://doi.org/10.1175/JCLI-D-11-00392.1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free