Speed kills: Highly relativistic spaceflight would be fatal for passengers and instruments

  • Edelstein W
  • Edelstein A
N/ACitations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

Highly relativistic speeds are desirable for interstellar travel. Relativistic time dilation would reduce the subjective duration of the trip for the travelers, so that they can cover galaxy-scale distances in a reasonable amount of personal time. Unfortunately, as spaceship velocities approach the speed of light, interstellar hydrogen H, although only present at a density of approximately 1.8 atoms/cm3, turns into intense radiation that would quickly kill passengers and destroy electronic instrumentation. In addition, the energy loss of ionizing radiation passing through the ship’s hull represents an increasing heat load that necessitates large expenditures of energy to cool the ship. Stopping or diverting this flux, either with material or electromagnetic shields, is a daunting problem. Going slow to avoid severe H irradiation sets an upper speed limit of v ~ 0.5 c. This velocity only gives a time dilation factor of about 15%, which would not substantially assist galaxy-scale voyages. Diffuse interstellar H atoms are the ultimate cosmic space mines and represent a formidable obstacle to interstellar travel.

Cite

CITATION STYLE

APA

Edelstein, W. A., & Edelstein, A. D. (2012). Speed kills: Highly relativistic spaceflight would be fatal for passengers and instruments. Natural Science, 04(10), 749–754. https://doi.org/10.4236/ns.2012.410099

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free