Bartlett correction of test statistics in structural equation modeling

3Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

Model selection is one of the most important steps in the application of structural equation modeling (SEM). In this process, the likelihood ratio test statistic, T, is a commonly employed index. Hypothesis testing can be performed on the basis that T asymptotically follows the χ2 distribution. Various fit indices have been proposed, most of which are based on the assumption that T asymptotically follows the χ2 distribution. When the size of the sample is small, however, the distribution of T deviates considerably from the χ2 distribution. This problem, especially pronounced when there is a large number of indicators per factor, is serious because it violates the theoretical justification of utilizing for model selection not only T, but also many other fit indices. In the present article, we propose a Bartlett correction of T to improve its approximation to the χ2 distribution. When the efficacy of our method was evaluated by Monte Carlo simulation, the results showed that this method was superior to the current standard.

Cite

CITATION STYLE

APA

Okada, K., Hosino, T., & Shigemasu, K. (2007). Bartlett correction of test statistics in structural equation modeling. Japanese Journal of Educational Psychology, 55(3), 382–392. https://doi.org/10.5926/jjep1953.55.3_382

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free