Arabic Aspect-Based Sentiment Classification Using Seq2Seq Dialect Normalization and Transformers

  • Chennafi M
  • Bedlaoui H
  • Dahou A
  • et al.
N/ACitations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

Sentiment analysis is one of the most important fields of natural language processing due to its wide range of applications and the benefits associated with using it. It is defined as identifying the sentiment polarity of natural language text. Researchers have recently focused their attention on Arabic SA due to the massive amounts of user-generated content on social media and e-commerce websites in the Arabic world. Most of the research in this fieldwork is on the sentence and document levels. This study tackles the aspect-level sentiment analysis for the Arabic language, which is a less studied version of SA. Because Arabic NLP is challenging and there are few available Arabic resources and many Arabic dialects, limited studies have attempted to detect aspect-based sentiment analyses on Arabic texts. Specifically, this study considers two ABSA tasks: aspect term polarity and aspect category polarity, using the text normalization of the Arabic dialect after making the classification task. We present a Seq2Seq model for dialect normalization that can serve as a pre-processing step for the ABSA classification task by reducing the number of OOV words. Thus, the model’s accuracy increased. The results of the conducted experiments show that our models outperformed the existing models in the literature on both tasks and datasets.

Cite

CITATION STYLE

APA

Chennafi, M. E., Bedlaoui, H., Dahou, A., & Al-qaness, M. A. A. (2022). Arabic Aspect-Based Sentiment Classification Using Seq2Seq Dialect Normalization and Transformers. Knowledge, 2(3), 388–401. https://doi.org/10.3390/knowledge2030022

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free