The goal of this study was to determine whether hepatic biotransformation of testosterone is normally sexually dimorphic in juvenile alligators and whether living in a contaminated environment affects hepatic dimorphism. Lake Woodruff served as our reference site. Moonshine Bay, located on the west side of Lake Okeechobee, served as an intermediate site. Lake Apopka, the Belle Glade are located at the south end of Lake Okeechobee, and Water Conservation Area 3A, in the northern Everglades, served as our contaminated sites (all lakes are in Florida). Normal testosterone hydroxylase activity exhibited sexually dimorphic patterns of expression, with reference animals from Lake Woodruff exhibiting a female:male ratio of 1.44. This pattern was perturbed in all of the intermediate and contaminated sites investigated. Normal testosterone oxido-reductase activity exhibited sexually dimorphic expression (Lake Woodruff female:male ratio of 1.45). This pattern was altered in all contaminated sites investigated. UDP-Glucuronosyltransferase activity exhibited no sexually dimorphic pattern in animals collected from our reference site, with Lake Woodruff animals exhibiting a female:male ratio of 1.06. This pattern was perturbed in animals from Water Conservation Area 3A, which exhibited a female:male ratio of 0.65. Sulfotransferase activity demonstrated no sexual dimorphism at any of the sites investigated, although elevated activity was observed in males from the Lake Okeechobee watershed compared to those from Lake Woodruff. These data demonstrate different patterns of hepatic androgen biotransformation in animals living in contaminated environments.
CITATION STYLE
Gunderson, M. P., Leblanc, G. A., & Guillette, L. J. (2001). Alterations in sexually dimorphic biotransformation of testosterone in juvenile American alligators (Alligator mississippiensis) from contaminated lakes. Environmental Health Perspectives, 109(12), 1257–1264. https://doi.org/10.1289/ehp.011091257
Mendeley helps you to discover research relevant for your work.