Fatigue life prediction for transverse crack initiation of CFRP cross-ply and quasi-isotropic laminates

28Citations
Citations of this article
47Readers
Mendeley users who have this article in their library.

Abstract

Carbon fiber reinforced plastic (CFRP) laminates are used as main structural members in many applications. Transverse cracks that form in 90° layers of CFRP laminates are mostly initial damage in the case where tensile loading is vertically applied to the 90° layers of CFRP laminates, and they are the origin of more serious damage of delamination and fiber breakage. It is thus important to predict quantitatively the transverse crack initiation of CFRP laminates subjected to cyclic loading to ensure the long-term reliability of the laminates. The initiation and multiplication behaviors of transverse cracks strongly depend on the laminate configuration, thickness, and thermal residual stress. Therefore, a model based on theWalker model was proposed to predict transverse crack initiation in CFRP cross-ply and quasi-isotropic laminates under cyclic loading in the present study. The usefulness of the proposed model was verified with 10 different CFRP laminates formed from four different prepregs with epoxy resin matrices. The analysis results were in good agreement with experimental results. The fatigue life was expressed with three constants, which related to the fatigue strength reduction, the normalized fatigue strength at N = 1 cycle, and the contribution of stress amplitude to the fatigue life, and they are independent of the laminate configuration.

Cite

CITATION STYLE

APA

Hosoi, A., & Kawada, H. (2018). Fatigue life prediction for transverse crack initiation of CFRP cross-ply and quasi-isotropic laminates. Materials, 11(7). https://doi.org/10.3390/ma11071182

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free