Cooperative search by multiple unmanned aerial vehicles in a nonconvex environment

Citations of this article
Mendeley users who have this article in their library.


This paper presents a distributed cooperative search algorithm for multiple unmanned aerial vehicles (UAVs) with limited sensing and communication capabilities in a nonconvex environment. The objective is to control multiple UAVs to find several unknown targets deployed in a given region, while minimizing the expected search time and avoiding obstacles. First, an asynchronous distributed cooperative search framework is proposed by integrating the information update into the coverage control scheme. And an adaptive density function is designed based on the real-time updated probability map and uncertainty map, which can balance target detection and environment exploration. Second, in order to handle nonconvex environment with arbitrary obstacles, a new transformation method is proposed to transform the cooperative search problem in the nonconvex region into an equivalent one in the convex region. Furthermore, a control strategy for cooperative search is proposed to plan feasible trajectories for UAVs under the kinematic constraints, and the convergence is proved by LaSalle's invariance principle. Finally, by simulation results, it can be seen that our proposed algorithm is effective to handle the search problem in the nonconvex environment and efficient to find targets in shorter time compared with other algorithms.




Ji, X., Wang, X., Niu, Y., & Shen, L. (2015). Cooperative search by multiple unmanned aerial vehicles in a nonconvex environment. Mathematical Problems in Engineering, 2015.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free