Critical analysis of Alzheimer's amyloid-beta toxicity to mitochondria

43Citations
Citations of this article
55Readers
Mendeley users who have this article in their library.

Abstract

Amyloid- beta peptide (A beta) is believed to be a central player in the Alzheimer disease (AD) pathogenesis. However, its mechanisms of toxicity to the central nervous system are unknown. To explore this area, investigators have recently focused on Abeta-induced cellular dysfunction. Extensive research has been conducted to investigate Abeta monomers and oligomers, and these multiple facets have provided a wealth of data from specific models. Abeta appears to be accumulated in neuronal mitochondria and mediates mitochondrial toxicity. Mitochondrial dysfunction became a hallmark of Abeta-induced neuronal toxicity. Mitochondria are currently considered as primary targets in the pathobiology of neurodegeneration. This review provides an overview of the Abeta toxicity to isolated mitochondria, mitochondria in different tissues and cells in vitro and in vivo. Full texts and abstracts from all 530 biomedical articles listed in PubMed and published before January 2014 were analysed. The mechanisms underlying the interaction between A beta and mitochondrial membranes and resulting mitochondrial dysfunction are most disputed issues. Understanding and discussing this interaction is essential to evaluating A beta effects on various intracellular metabolic processes.

Cite

CITATION STYLE

APA

Kaminsky, Y. G., Tikhonova, L. A., & Kosenko, E. A. (2015, January 15). Critical analysis of Alzheimer’s amyloid-beta toxicity to mitochondria. Frontiers in Bioscience - Landmark. Frontiers in Bioscience. https://doi.org/10.2741/4304

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free