Ti reactive sintering of electrically conductive Al2O3-TiN composite: Influence of Ti particle size and morphology on electrical and mechanical properties

3Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

In the current study, Al2O3-TiN composites were successfully fabricated with various particle sizes (10, 20, 30, and 50 μm) and concentrations (5, 10, 15, and 20 vol %) via a novel ball milling + Ti reactive sintering process. By applying the reactive sintering, Ti powders will transform into TiN particles, which act as mechanical reinforcements and electrical conductors in the Al2O3 matrix. The ball milling process alters the Ti powder morphology from a low-aspect-ratio sphere into a high-aspect-ratio disc, which reduces the electrical percolation threshold value from 29% to 15% in the current setup. However, such a threshold value is insensitive to the particle size. Meanwhile, the Ti particle size has a significant influence on the material's mechanical properties. A small particle size results in less porosity and hence higher flexural strength of the composite.

Cite

CITATION STYLE

APA

Zhai, W., Song, X., Li, T., Yu, B., Lu, W., & Zeng, K. (2017). Ti reactive sintering of electrically conductive Al2O3-TiN composite: Influence of Ti particle size and morphology on electrical and mechanical properties. Materials, 10(12). https://doi.org/10.3390/ma10121348

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free