Sedimentary sulfur isotopes and neoarchean ocean oxygenation

37Citations
Citations of this article
73Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Abrupt disappearance of mass-independent fractionation of sulfur isotopes (MIF-S) from the geologic record and an apparent ingrowth in seawater sulfate around 2.45 billion years ago (Ga) signal the first large-scale oxygenation of the atmosphere [the Great Oxygenation Event (GOE)]. Pre- GOE O2 production is evident from multiple other terrestrial and marine proxies, but oceanic O2 concentrations remain poorly constrained. Furthermore, current interpretations of S isotope records do not explain a concurrent expansion in the range of both MIF-S—diagnostic for low atmospheric O2—and d34S beginning at 2.7 Ga. To address these unknowns, we developed a reaction-transport model to analyze the preservation patterns of sulfur isotopes in Archean sedimentary pyrites, one of the most robust and widely distributed proxies for early Earth biogeochemistry. Our modeling, paradoxically, reveals that micromolar levels of O2 in seawater enhance the preservation of large MIF-S signals, whereas concomitant ingrowth of sulfate expands the ranges in pyrite d34S. The 2.7- to 2.45-Ga expansion in both D33S and d34S ranges thus argues for a widespread and protracted oxygenation of seawater, at least in shallow marine environments. At the micromolar levels predicted, the surface oceans would support a strong flux of O2 to the atmosphere, where O2 sinks balanced these fluxes until the GOE. This microoxic seawater would have provided habitat for early aerobic microorganisms and supported a diversity of new O2-driven biogeochemical cycles in the Neoarchean.

Cite

CITATION STYLE

APA

Fakhraee, M., Crowe, S. A., & Katsev, S. (2018). Sedimentary sulfur isotopes and neoarchean ocean oxygenation. Science Advances, 4(1). https://doi.org/10.1126/sciadv.1701835

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free