Developing computational thinking through a virtual robotics programming curriculum

120Citations
Citations of this article
300Readers
Mendeley users who have this article in their library.

Abstract

Computational thinking describes key principles from computer science that are broadly generalizable. Robotics programs can be engaging learning environments for acquiring core computational thinking competencies. However, few empirical studies evaluate the effectiveness of a robotics programming curriculum for developing computational thinking knowledge and skills. This study measures pre/post gains with new computational thinking assessments given to middle school students who participated in a virtual robotics programming curriculum. Overall, participation in the virtual robotics curriculum was related to significant gains in pre-to posttest scores, with larger gains for students who made further progress through the curriculum. The success of this intervention suggests that participation in a scaffolded programming curriculum, within the context of virtual robotics, supports the development of generalizable computational thinking knowledge and skills that are associated with increased problem-solving performance on nonrobotics computing tasks. Furthermore, the particular units that students engage in may determine their level of growth in these competencies.

Cite

CITATION STYLE

APA

Witherspoon, E. B., Higashi, R. M., Schunn, C. D., Baehr, E. C., & Shoop, R. (2017). Developing computational thinking through a virtual robotics programming curriculum. ACM Transactions on Computing Education, 18(1). https://doi.org/10.1145/3104982

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free