Abstract
Background: Zinc oxide nanoparticles (ZnO NPs) can be considered as nanofertilizer providing zinc as an essential micronutrient for plant growth and production at specific safe dose, however, above this dose; ZnO NPs induce oxidative stress. The present research aimed to evaluate some physiological and molecular effects of ZnO NPs on Trigonella foenum-graecum (fenugreek) plant. Results: The ZnO NPs were applied at five different concentrations (10, 20, 30, 40, and 50 mg/l) via soaking fenugreek seeds for 24 h. Fenugreek seedlings were harvested after 14 days for biomass and biochemical analyses. The results revealed that increasing ZnO NPs concentration led to a significant increase in all measured parameters until peaked at 30 mg/l; after that, a decline trend was detected. However, malondialdehyde (MDA) increased significantly just at higher concentrations of ZnO NPs (40 and 50 mg/l). In addition, genetic variation measure using start codon targeted (SCoT) markers revealed that ZnO NP treatments exhibited limited genetic variation. Conclusion: Results showed that treatment with ZnO NPs at 30 mg/l can improve biomass, bioactive compounds, and antioxidant activity of fenugreek seedlings, besides being safe for DNA. So, this concentration could be a decent nanofertilizer for fenugreek plant.
Author supplied keywords
Cite
CITATION STYLE
Elsherif, D. E., Abd-ElShafy, E., & Khalifa, A. M. (2023). Impacts of ZnO as a nanofertilizer on fenugreek: some biochemical parameters and SCoT analysis. Journal of Genetic Engineering and Biotechnology, 21(1). https://doi.org/10.1186/s43141-023-00501-0
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.