Apurinic/apyrimidinic endonuclease 1 inhibits protein kinase C-mediated p66shc phosphorylation and vasoconstriction

24Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Aims Phosphorylation of the adaptor protein p66shc is essential for p66shc-mediated oxidative stress. We investigated the role of the reducing protein/DNA repair enzyme apurinic/apyrimidinic endonuclease1 (APE1) in modulating protein kinase CβII (PKCβII)-mediated p66shc phosphorylation in cultured endothelial cells and PKC-mediated vasoconstriction of arteries. Methods and results Oxidized low-density lipoprotein (oxLDL)induced p66shc phosphorylation at serine 36 residue and PKCβII phosphorylation in mouse endothelial cells. Adenoviral overexpression of APE1 resulted in reduction of oxLDL-induced p66shc and PKCβII phosphorylation. Phorbol 12-myristate 13-acetate (PMA), which stimulates PKCs, induced p66shc phosphorylation and this was inhibited by a selective PKCβII inhibitor. Adenoviral overexpression of PKCβII also increased p66shc phosphorylation. Overexpression of APE1 suppressed PMA-induced p66shc phosphorylation. Moreover, PMA-induced p66shc phosphorylation was augmented in cells in which APE1 was knocked down. PMA increased cytoplasmic APE1 expression, compared with the basal condition, suggesting the role of cytoplasmic APE1 against p66shc phosphorylation. Finally, vasoconstriction induced by phorbol-12,13, dibutylrate, another PKC agonist, was partially inhibited by transduction of Tat-APE1 into arteries. Conclusion APE1 suppresses oxLDL-induced p66shc activation in endothelial cells by inhibiting PKCβII-mediated serine phosphorylation of p66shc, and mitigates vasoconstriction induced by activation of PKC. © The Author 2011.

Cite

CITATION STYLE

APA

Lee, S. K., Chung, J. I., Park, M. S., Joo, H. K., Lee, E. J., Cho, E. J., … Jeon, B. H. (2011). Apurinic/apyrimidinic endonuclease 1 inhibits protein kinase C-mediated p66shc phosphorylation and vasoconstriction. Cardiovascular Research, 91(3), 502–509. https://doi.org/10.1093/cvr/cvr095

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free