Whole-genome regulation analysis of histone H3 lysin 27 trimethylation in subclinical mastitis cows infected by Staphylococcus aureus

19Citations
Citations of this article
38Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: S. aureus is one of the major etiological agents causing bovine subclinical mastitis. The regulatory effects of H3K27me3 on gene expression in subclinical S. aureus mastitis cows are unknown. This study aimed to profile genome-wide transcriptional changes regulated by H3K27me3 in bovine lymphocytes applied in subclinical S. aureus mastitis cows and healthy controls. Results: A total of 61 differentially expressed genes (DEGs) were detected in subclinical S. aureus mastitis cows compared to the healthy controls, of which 25 DEGs are up-regulated and the rest are down-regulated genes in subclinical S.aureus mastitis cows. The up-regulated genes are mainly involved in the Jak-STAT signaling pathway, cytokine-cytokine receptor interaction, and T cell receptor-signaling pathway, while the down-regulated genes are related to metabolism pathways. Combination analysis of histone methylation and gene expression revealed that H3K27 trimethylation levels in silent genes were higher in subclinical S. aureus mastitis cattle than in healthy cows. The key regions of H3K27me3 target genes related to subclinical S. aureus mastitis were the upstream 2 kb regions of the DEGs relative to transcription start site (TSS). Conclusions: The current study provides a novel insight into the interaction between S. aureus and lymphocytes in lactating cows by histone H3 methylation regulation. The differentially expressed genes in bovine lymphocytes regulated by H3K27me3 on upstream 2 kb regions (IL10, PTX3 and etc.) may relate to S. aureus mastitis susceptibility and could be considered as key candidate genes for anti- S. aureus mastitis study and breeding.

Cite

CITATION STYLE

APA

He, Y., Song, M., Zhang, Y., Li, X., Song, J., Zhang, Y., & Yu, Y. (2016). Whole-genome regulation analysis of histone H3 lysin 27 trimethylation in subclinical mastitis cows infected by Staphylococcus aureus. BMC Genomics, 17(1). https://doi.org/10.1186/s12864-016-2947-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free