Ensemble based temporal weighting and pareto ranking (ETP) model for effective root cause analysis

1Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

Root-cause identification plays a vital role in business decision making by providing effective future directions for the organizations. Aspect extraction and sentiment extraction plays a vital role in identifying the root-causes. This paper proposes the Ensemble based temporal weighting and pareto ranking (ETP) model for Root-cause identification. Aspect extraction is performed based on rules and is followed by opinion identification using the proposed boosted ensemble model. The obtained aspects are validated and ranked using the proposed aspect weighing scheme. Pareto-rule based aspect selection is performed as the final selection mechanism and the results are presented for business decision making. Experiments were performed with the standard five product benchmark dataset. Performances on all five product reviews indicate the effective performance of the proposed model. Comparisons are performed using three standard state-of-the-art models and effectiveness is measured in terms of F-Measure and Detection rates. The results indicate improved performances exhibited by the proposed model with an increase in F-Measure levels at 1%–15% and detection rates at 4%–24% compared to the state-of-the-art models.

Cite

CITATION STYLE

APA

Seerangan, N. K., & Vijayaragavan Shanmugam, S. (2021). Ensemble based temporal weighting and pareto ranking (ETP) model for effective root cause analysis. Computers, Materials and Continua, 69(1), 819–830. https://doi.org/10.32604/cmc.2021.012135

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free