Self-assembling behavior and interface structure in vertically aligned nanocomposite (Pr0.5Ba0.5MnO3)1-x:(CeO2)x films on (001) (La,Sr)(Al,Ta)O3 substrates

4Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Heteroepitaxial oxide-based nanocomposite films possessing a variety of functional properties have attracted tremendous research interest. Here, self-assembled vertically aligned nanocomposite (Pr0.5Ba0.5MnO3)1-x:(CeO2)x (x = 0.2 and 0.5) films have been successfully grown on single-crystalline (001) (La,Sr)(Al,Ta)O3 substrates by the pulsed laser deposition technique. Self-assembling behavior of the nanocomposite films and atomic-scale interface structure between Pr0.5Ba0.5MnO3 matrix and CeO2 nanopillars have been investigated by advanced electron microscopy techniques. Two different orientation relationships, (001)[100]Pr0.5Ba0.5MnO3//(001)[1-10]CeO2 and (001)[100]Pr0.5Ba0.5MnO3//(110)[1-10]CeO2, form between Pr0.5Ba0.5MnO3 and CeO2 in the (Pr0.5Ba0.5MnO3)0.8:(CeO2)0.2 film along the film growth direction, which is essentially different from vertically aligned nanocomposite (Pr0.5Ba0.5MnO3)0.5:(CeO2)0.5 films having only (001)[100]Pr0.5Ba0.5MnO3//(001)[1-10]CeO2 orientation relationship. Both coherent and semi-coherent Pr0.5Ba0.5MnO3/CeO2 interface appear in the films. In contrast to semi-coherent interface with regular distribution of interfacial dislocations, interface reconstruction occurs at the coherent Pr0.5Ba0.5MnO3/CeO2 interface. Our findings indicate that epitaxial strain imposed by the concentration of CeO2 in the nanocomposite films affects the self-assembling behavior of the vertically aligned nanocomposite (Pr0.5Ba0.5MnO3)1-x:(CeO2)x films.

Cite

CITATION STYLE

APA

Cheng, S. D., Lu, L., Cheng, S., Shen, L., Liu, M., Dai, Y., … Mi, S. B. (2020). Self-assembling behavior and interface structure in vertically aligned nanocomposite (Pr0.5Ba0.5MnO3)1-x:(CeO2)x films on (001) (La,Sr)(Al,Ta)O3 substrates. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-59166-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free