In this work, the specimen of the fabrics (polyester/viscose blend) was prepared. At first, the samples were placed under microwave radiation at different times, and then the optimum condition of treated fabrics (8 min) was selected for treatment. The physical properties and surface morphology of Cu nanoparticle and multi-wall carbon nanotubes (MWCNTs) with different percentages were measured using dispersing agent, washing performance, stability, and physical properties of the fabric. The image of surface morphology’s specimens was also photographed by scanning electron microscopy (SEM). Afterwards, we measured the specimens’ electrical conductivity properties, according to AATCC 2005-76 standards, and subsequently, K/S, %R, and Lab value of specimens was analyzed using reflection spectrophotometer. In fact, the results indicated that optimum electrical resistivity, which was also the aim of the study, is 9% one weight of fabric (o.w.f.) nanoparticles on the fabric and that electrical resistivity for the values of 9% o.w.f. for CNT is slightly greater than Cu.
CITATION STYLE
Akbarpour, H., Rashidi, A., Mirjalili, M., & Nazari, A. (2019). Comparison of the conductive properties of polyester/viscose fabric treated with Cu nanoparticle and MWCNTs. Journal of Nanostructure in Chemistry, 9(4), 335–348. https://doi.org/10.1007/s40097-019-00322-z
Mendeley helps you to discover research relevant for your work.