Background/Aims: Growing evidence suggests mitochondrial dysfunction (MtD) and the Nlrp3 inflammasome play critical roles in chronic kidney disease (CKD) progression. We previously reported that Aldosterone (Aldo)-induced renal injury in vitro is directly caused by mitochondrial reactive oxygen species (mtROS)-mediated activation of the Nlrp3 inflammasome. Here we aimed to determine whether a mitochondria-targeted antioxidant (Mito-Tempo) could prevent Aldo-induced kidney damage in vivo. Methods: C57BL/6J mice were treated with Aldo and/or Mito-Tempo (or ethanol as a control) for 4 weeks. Renal injury was evaluated by Periodic Acid-Schiff reagent or Masson's trichrome staining and electron microscopy. ROS were measured by DCFDA fluorescence and ELISA. MtD was determined by real-time PCR and electron microscopy. Activation of the Nlrp3 inflammasome and endoplasmic reticulum stress (ERS) was detected via western blot. Results: Compared with control mice, Aldo-infused mice showed impaired renal function, increased mtROS production and MtD, Nlrp3 inflammasome activation, and elevated ERS. We showed administration of Mito-Tempo significantly improved renal function and MtD, and reduced Nlrp3 inflammasome activation and ERS in vivo. Conclusion: Mitochondria-targeted antioxidants may attenuate Aldo-infused renal injury by inhibiting MtD, the Nlrp3 inflammasome, and ERS in vivo. Therefore, targeting mtROS might be an effective strategy for preventing CKD.
CITATION STYLE
DIng, W., Liu, T., Bi, X., & Zhang, Z. (2017). Mitochondria-Targeted Antioxidant Mito-Tempo Protects Against Aldosterone-Induced Renal Injury in Vivo. Cellular Physiology and Biochemistry, 44(2), 741–750. https://doi.org/10.1159/000485287
Mendeley helps you to discover research relevant for your work.