A machine learning approach for prediction of auditory brain stem response in patients after head-and-neck radiation therapy

6Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Objective: The present study aimed to assess machine learning (ML) models according to radiomic features to predict ototoxicity using auditory brain stem responses (ABRs) in patients with radiation therapy (RT) for head-and-neck cancers. Materials and Methods: The ABR test was performed on 50 patients having head-and-neck RT. Radiomic features were extracted from the brain stem in computed tomography images to generate a radiomic signature. Moreover, accuracy, sensitivity, specificity, the area under the curve, and mean cross-validation were used to evaluate six different ML models. Results: Out of 50 patients, 21 participants experienced ototoxicity. Furthermore, 140 radiomic features were extracted from the segmented area. Among the six ML models, the Random Forest method with 77% accuracy provided the best result. Conclusion: According to the ML approach, we showed the relatively high prediction power of the radiomic features in radiation-induced ototoxicity. To better predict the outcomes, future studies on a larger number of participants are recommended.

Cite

CITATION STYLE

APA

Amiri, S., Abdolali, F., Neshastehriz, A., Nikoofar, A., Farahani, S., Firoozabadi, L. A., … Cheraghi, S. (2023). A machine learning approach for prediction of auditory brain stem response in patients after head-and-neck radiation therapy. Journal of Cancer Research and Therapeutics, 19(5), 1219–1225. https://doi.org/10.4103/jcrt.jcrt_2298_21

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free